首页> 外文OA文献 >Principal Component Analysis of RR Lyrae light curves
【2h】

Principal Component Analysis of RR Lyrae light curves

机译:RR Lyrae光曲线的主成分分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we analyze the structure of RRab star light curves using Principal Component Analysis. We find this is a very efficient way to describe many aspects of RRab light curve structure: in many cases, a Principal Component fit with 9 parameters can describe a RRab light curve including bumps whereas a 17 parameter Fourier fit is needed. As a consequence we show statistically why the amplitude is also a good summary of the structure of a RR Lyrae light curve. We also use our analysis to derive an empirical relation relating absolute magnitude to light curve structure. In comparing this formula to those derived from exactly the same dataset but using Fourier parameters, we find that the Principal Component Analysis approach has disticnt advantages. These advantages are, firstly, that the errors on the coefficients in such formulae are smaller, and secondly, that the correlation between Principal Components is significantly smaller than the correlation between Fourier amplitudes. These two factors lead to reduced formal errors, in some cases estimated to be a factor of 2, on the eventual fitted value of the absolute magnitude. This technique will prove very useful in the analysis of data from existing large scale survey projects concerning variable stars.
机译:在本文中,我们使用主成分分析法分析了RRab星光曲线的结构。我们发现这是描述RRab光曲线结构的许多方面的一种非常有效的方法:在许多情况下,具有9个参数的主成分拟合可以描述包括凸点的RRab光曲线,而需要17个参数的Fourier拟合。结果,我们从统计学上显示了为什么振幅也是RR Lyrae光曲线结构的良好总结。我们还使用我们的分析来得出经验关系,将绝对量级与光曲线结构相关联。通过将此公式与从完全相同的数据集但使用傅立叶参数得出的公式进行比较,我们发现主成分分析方法具有明显的优势。这些优点是,首先,这些公式中系数的误差较小,其次,主成分之间的相关性明显小于傅立叶振幅之间的相关性。这两个因素导致最终幅度的最终拟合值的形式误差减少,在某些情况下估计为2倍。这项技术在分析来自现有大型变星项目的数据时,将被证明非常有用。

著录项

  • 作者

    Kanbur, S M; Mariani, H;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号